Selection against Accumulating Mutations in Niche-Preference Genes Can Drive Speciation
نویسندگان
چکیده
Our current understanding of sympatric speciation is that it occurs primarily through disruptive selection on ecological genes driven by competition, followed by reproductive isolation through reinforcement-like selection against inferior intermediates/heterozygotes. Our evolutionary model of selection on resource recognition and preference traits suggests a new mechanism for sympatric speciation. We find speciation can occur in three phases. First a polymorphism of functionally different phenotypes is established through evolution of specialization. On the gene level, regulatory functions have evolved in which some alleles are conditionally switched off (i.e. are silent). These alleles accumulate harmful mutations that potentially may be expressed in offspring through recombination. Second mating associated with resource preference invades because harmful mutations in parents are not expressed in the offspring when mating assortatively, thereby dividing the population into two pre-zygotically isolated resource-specialist lineages. Third, silent alleles that evolved in phase one now accumulate deleterious mutations over the following generations in a Bateson-Dobzhansky-Muller fashion, establishing a post-zygotic barrier to hybridization.
منابع مشابه
Speciation: more likely through a genetic or through a learned habitat preference?
A problem in understanding sympatric speciation is establishing how reproductive isolation can arise when there is disruptive selection on an ecological trait. One of the solutions that has been proposed is that a habitat preference evolves, and that mates are chosen within the preferred habitat. We present a model where the habitat preference can evolve either by means of a genetic mechanism o...
متن کاملLearning and colonization of new niches: a first step toward speciation.
Learning processes potentially play a role in speciation but are often ignored in speciation models. Learning may, for instance, play a role when a new niche is being colonized, because the learning of niche features may cause niche-specific assortative mating and a tendency to produce young in this niche. Several animal species learn about their environmental features that may be important in ...
متن کاملSpeciation and ecology revisited: phylogenetic niche conservatism and the origin of species.
Evolutionary biologists have often suggested that ecology is important in speciation, in that natural selection may drive adaptive divergence between lineages that inhabit different environments. I suggest that it is the tendency of lineages to maintain their ancestral ecological niche (phylogenetic niche conservatism) and their failure to adapt to new environments which frequently isolates inc...
متن کاملThe speed of ecological speciation.
Adaptation can occur on ecological time-scales (contemporary evolution) and adaptive divergence can cause reproductive isolation (ecological speciation). From the intersection of these two premises follows the prediction that reproductive isolation can evolve on ecological time-scales. We explore this possibility in theory and in nature. Finding few relevant studies, we examine each in some det...
متن کاملRevisiting the vanishing refuge model of diversification
Much of the debate around speciation and historical biogeography has focused on the role of stabilizing selection on the physiological (abiotic) niche, emphasizing how isolation and vicariance, when associated with niche conservatism, may drive tropical speciation. Yet, recent re-emphasis on the ecological dimensions of speciation points to a more prominent role of divergent selection in drivin...
متن کامل